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We show that the value function of the optimal stopping game for a right-
continuous strong Markov process can be identified via equality between the
smallest superharmonic and the largest subharmonic function lying between
the gain and the loss function (semiharmonic characterisation) if and only if
the Nash equilibrium holds (i.e. there exists a saddle point of optimal stopping
times). When specialised to optimal stopping problems it is seen that the
former identification reduces to the classic characterisation of the value function
in terms of superharmonic or subharmonic functions. The equivalence itself
shows that finding the value function by ‘pulling a rope’ between ‘two obstacles’
is the same as establishing a Nash equilibrium. Further properties of the value
function and the optimal stopping times are exhibited in the proof.

1. Introduction

Consider the optimal stopping game where the sup-player chooses a stopping time τ to
maximise, and the inf-player chooses a stopping time σ to minimise, the expected payoff

(1.1) Mx(τ, σ) = Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ)

]

where X = (Xt)t≥0 is a strong Markov process with X0 = x under Px , and G1, G2 and G3

are (finely) continuous functions satisfying G1 ≤ G3 ≤ G2 . Define the upper value and the
lower value of the game by

(1.2) V ∗(x) = inf
σ

sup
τ

Mx(τ, σ) & V∗(x) = sup
τ

inf
σ

Mx(τ, σ)

where the horizon (the upper bound for τ and σ above) may be either finite or infinite (for
further details of these hypotheses see Section 2 below). Note that V∗(x) ≤ V ∗(x) for all x
and recall that in this context one distinguishes: (i) the Stackelberg equilibrium, meaning that

(1.3) V ∗(x) = V∗(x)

for all x (in this case V := V ∗ = V∗ unambiguously defines the value of the game); and (ii)
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the Nash equilibrium, meaning that there exist stopping times τ∗ and σ∗ such that

(1.4) Mx(τ, σ∗) ≤ Mx(τ∗, σ∗) ≤ Mx(τ∗, σ)

for all stopping times τ and σ , and for all x (in other words (τ∗, σ∗) is a saddle point).
It is easily seen that the Nash equilibrium implies the Stackelberg equilibrium with V (x) =
Mx(τ∗, σ∗) for all x .

A variant of the problem above was first studied by Dynkin [10] using martingale methods
similar to those of Snell [29]. Specific examples of the same problem were studied in [15]
and [18] using Markovian methods (see also [19] for martingale methods). In parallel to that
Bensoussan and Friedman (cf. [16], [4], [5]) developed an analytic approach (for diffusions) based
on variational inequalities. Martingale methods were further advanced in [25] (see also [31]),
and Markovian setting was studied in [14] (via Wald-Bellman equations) and [30] (via penalty
equations). More recent papers on optimal stopping games include [20], [23], [1], [17], [11], [13],
[21], [22], [2] and [3]. They study specific problems and often lead to explicit solutions. For
optimal stopping games with randomised stopping times see [24] and the references therein. For
connections with singular stochastic control (forward/backward SDE) see [7] and the references
therein. For non zero-sum optimal stopping games see [26] and the references therein (the
optimal stopping game (1.2) is a zero-sum game since the payoff (1.1) may be thought of as
the payment of the inf-player to the sup-player if both players are viewed to be rational).

It was recently proved in [12] that if X is right-continuous then the Stackelberg equilibrium
(1.3) holds with V := V ∗ = V∗ defining a measurable function, and if X is right-continuous
and left-continuous over stopping times then the Nash equilibrium (1.4) holds with

τ∗ = inf { t ≥ 0 : Xt ∈ D1 } & σ∗ = inf { t ≥ 0 : Xt ∈ D2 }(1.5)

where D1 = {V = G1 } and D2 = {V = G2 } . The two sufficient conditions are known to
be most general in optimal stopping theory (see e.g. [27] and [28]). Moreover, if X is only
right-continuous and not left-continuous over stopping times, then the Nash equilibrium can
break down while the Stackelberg equilibrium still holds (cf. [12, Example 3.1]).

On the other hand, a fundamental result in optimal stopping theory states that the value
function V̂ of the optimal stopping problem

(1.6) V̂ (x) = sup
τ

ExG1(Xτ )

is the smallest superharmonic function that lies above the gain function G1 , and likewise the
value function V̌ of the optimal stopping problem

(1.7) V̌ (x) = inf
τ

ExG2(Xτ )

is the largest subharmonic function that lies below the loss function G2 . This result dates
back to Dynkin [8] and was derived in parallel to the general supermartingale or submartingale
characterisation due to Snell [29] (for more details see e.g. [27] and [28]). The characterisation
leads to the familiar picture where V̂ is identified with a rope put above the obstacle G1

having both ends pulled to the ground (see Figure 1 ), and likewise V̌ is identified with a rope
put below the obstacle G2 having both ends pulled to the sky (both pictures refer to the case
when X is a standard Brownian motion absorbed at the end points of the interval).
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Figure 1. An obstacle G1 and the rope V̂ depicting the superharmonic
characterisation of the value function in an optimal stopping problem.

If we formally set G2 ≡ +∞ in (1.1) then the optimal stopping game (1.2) reduces to the
optimal stopping problem (1.6) and hence the value function V = V̂ admits the superharmonic
characterisation. Likewise, if we formally set G1 ≡ −∞ in (1.1) then the optimal stopping
game (1.2) reduces to the optimal stopping problem (1.7) and hence the value function V = V̌
admits the subharmonic characterisation. This raises the question whether there is a semihar-
monic characterisation in the general case (when G1 and G2 are finite valued). A variant of
this question was considered earlier under conditions which imply the Nash equilibrium at the
first entry times (see [30]), and a one sided version of the same question (where V equals V̂ )
was studied more recently when X is a one-dimensional diffusion (see [11] and [13]).

The main purpose of the present paper is to address the question of the semiharmonic
characterisation in the general case where X is assumed to be a right-continuous strong
Markov process (and no Nash equilibrium is assumed to be attained at the first entry times
a priori). Our main result (Theorem 2.1) can be less formally stated as follows. Letting V̂
denote the smallest superharmonic function lying between G1 and G2 , and letting V̌ denote
the largest subharmonic function lying between G1 and G2 , we have V̂ = V̌ if and only
if the Nash equilibrium (1.4) holds. Either (and thus both) of these facts will hold when X
is left-continuous over stopping times (additionally to right-continuity). The equivalence itself
shows that finding the value function V is the same as ‘pulling a rope’ between ‘two obstacles’
(see Figure 2) which in turn is equivalent to establishing a Nash equilibrium. Further properties
of the value function and the optimal stopping times are exhibited in the proof.

2. Semiharmonic characterisation

1. Throughout we will consider a strong Markov process X = (Xt)t≥0 defined on a filtered
probability space (Ω,F , (Ft)t≥0, Px) and taking values in a measurable space (E,B) , where E
is a locally compact Hausdorff space with a countable base, and B is the Borel σ -algebra on
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E . It will be assumed that the process X starts at x under Px for x ∈ E and that the sample
paths of X are right-continuous. Recall also that X is said to be left-continuous over stopping
times (quasi-left-continuous) if Xτn → Xτ Px -a.s. whenever τn and τ are stopping times
such that τn ↑ τ as n →∞ . (Stopping times are always referred with respect to the filtration
(Ft)t≥0 given above.) It will also be assumed that the filtration (Ft)t≥0 is right-continuous
(implying that the first entry times to open and closed sets are stopping times) and that F0

contains all Px -null sets from FX
∞ = σ(Xt : t ≥ 0) (implying also that the first entry times to

Borel sets are stopping times). The main example we have in mind is when Ft = σ(FX
t ∪ N )

where FX
t = σ(Xs : 0 ≤ s ≤ t) and N = {A ⊆ Ω : ∃B ∈ FX

∞ , A ⊆ B , Px(B) = 0} for t ≥ 0
with F = F∞ . In addition, it is assumed that the mapping x 7→ Px(F ) is (universally) mea-
surable for each F ∈ F . It follows that the mapping x 7→ Ex(Z) is (universally) measurable
for each (integrable) random variable Z . Finally, without loss of generality we will assume
that Ω equals the canonical space E [0,∞) with Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0 , so that
the shift operator θt : Ω → Ω is well defined by θt(ω)(s) = ω(t+s) for ω ∈ Ω and t, s ≥ 0 .

The latter hypothesis enables one to use the following fact (which can be derived using
Galmarino’s test): If σ ≤ τ are stopping times (not necessarily the first entry times), then
there exists a function τσ : Ω× Ω → [0,∞] such that

τσ is Fσ⊗F∞-measurable(2.1)

ϑ 7→ τσ(ω, ϑ) is a stopping time(2.2)

τ(ω) = σ(ω) + τσ(ω, θσ(ω))(2.3)

for all ω ∈ Ω . If τ is the first entry time of X into a set, then τ = σ + τ ◦ θσ and τσ above
may be identified with τ (in the sense that τσ(ω, ϑ) = τ(ϑ) for all ω and ϑ ). Moreover, if
σ is a stopping time and Zσ : Ω → IR is a random variable (integrable) such that

(2.4) Zσ(ω) = Z(ω, θσ(ω))

for some Fσ⊗F∞ -measurable random variable Z : Ω×Ω → IR and ω ∈ Ω , then the strong
Markov property of X extends as follows

(2.5) Ex(Z
σ| Fσ)(ω) = EXσ(ω)Z(ω, )

for x ∈ E and ω ∈ Ω . The facts (2.1)-(2.5) will be used in the proof of Theorem 2.1 below
when showing that the Nash equilibrium (being attained at any two stopping times) implies
the semiharmonic characterisation.

Recall that a measurable function F : E → IR is finely continuous (i.e. continuous in the
fine topology) if and only if

(2.6) lim
t↓0

F (Xt) = F (x) Px-a.s.

for every x ∈ E . This property is further equivalent to the fact that the sample path

(2.7) t 7→ F (Xt(ω)) is right-continuous on IR+

for every ω ∈ Ω\N where Px(N) = 0 for all x ∈ E . A well-known sufficient condition for a
measurable function F : E → IR to be finely continuous is that

(2.8) lim
n→∞

ExF (XτKn
) = F (x)
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for x ∈ E whenever K1 ⊆ K2 ⊆ . . . are compact sets in E such that τKn ↓ 0 Px -a.s. as
n →∞ , where τKn = inf { t ≥ 0 : Xt ∈ Kn } denotes the first entry time of X into Kn for
n ≥ 1 . For more details on the facts above see e.g. [9] and [6].

2. Given finely continuous functions G1, G2, G3 : E → IR satisfying G1 ≤ G3 ≤ G2 and
the following integrability condition:

(2.9) Ex sup
t
|Gi(Xt)| < ∞ (i = 1, 2, 3)

for all x ∈ E , we consider the optimal stopping game where the sup-player chooses a stopping
time τ to maximise, and the inf-player chooses a stopping time σ to minimise, the expected
payoff (i.e. the payment of the inf-player to the sup-player)

(2.10) Mx(τ, σ) = Ex

[
G1(Xτ )I(τ <σ) + G2(Xσ)I(σ<τ) + G3(Xτ )I(τ =σ)

]

where X0 = x under Px .
Define the upper value and the lower value of the game by

(2.11) V ∗(x) = inf
σ

sup
τ

Mx(τ, σ) & V∗(x) = sup
τ

inf
σ

Mx(τ, σ)

where the horizon T (the upper bound for τ and σ above) may be either finite or infinite.
If T < ∞ then it will be assumed that G1(XT ) = G2(XT ) = G3(XT ) . In this case it is most
interesting to consider the setting where X is a time-space process (t, Yt) for t ∈ [0, T ] so
that Gi = Gi(t, y) will be functions of both time and space for i = 1, 2, 3 . If T = ∞ then it
will be assumed that

(2.12) lim
t→∞

G1(Xt) = lim
t→∞

G2(Xt) Px-a.s.

which will also be assigned as the common value G3(X∞) if τ and σ are allowed to take
the value ∞ . The latter condition corresponds to ‘tying the rope at infinity’. Yet another
interesting example (of particular importance for the ‘rope’ picture) is when the process X
is absorbed at the first entry time to a set (or point) so to remain at the same state forever.
Although, formally speaking, this situation corresponds to the case of infinite horizon, it is also
clear that the game cannot last indefinitely if the killing happens with probability one.

3. Let F : E → IR be a measurable function, let C ⊆ E be a measurable set, and set
D = E \C . Let τD = inf { t ≥ 0 : Xt ∈ D } be the first entry time of X into D . The
function F is said to be superharmonic in C if

(2.13) ExF (Xρ∧τD
) ≤ F (x)

for every stopping time ρ and all x ∈ E . The function F is said to be subharmonic in C if

(2.14) ExF (Xρ∧τD
) ≥ F (x)

for every stopping time ρ and all x ∈ E . The function F is said to be harmonic in C if

(2.15) ExF (Xρ∧τD
) = F (x)
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Figure 2. Two obstacles G1 and G2 and the rope V depicting the semiharmonic
characterisation of the value function in an optimal stopping game.

for every stopping time ρ and all x ∈ E . It is easily verified using the strong Markov property
of (Xt∧τD

)t≥0 and the optional sampling theorem that

F is superharmonic in C ⇐⇒ (F (Xt∧τD
))t≥0 is a right-continuous supermartingale(2.16)

F is subharmonic in C ⇐⇒ (F (Xt∧τD
))t≥0 is a right-continuous submartingale(2.17)

F is harmonic in C ⇐⇒ (F (Xt∧τD
))t≥0 is a right-continuous martingale(2.18)

under Px whenever F is finely continuous and satisfies the integrability condition

(2.19) Ex sup
t
|F (Xt∧τD

)| < ∞

for x ∈ E . These two sufficient conditions can also be relaxed (further details will be omitted).

4. Since X is right-continuous we know that under (2.12) we have V ∗ = V∗ and V :=
V ∗ = V∗ defines a measurable function (cf. [12, Theorem 2.1]). Let us introduce the following
two classes of functions:

Sup[G1, G2) =
{

F : E → [G1, G2] : F is finely continuous and superharmonic(2.20)

in {F <G2} and {V <G2}
}

Sub(G1, G2] =
{

F : E → [G1, G2] : F is finely continuous and subharmonic(2.21)

in {F >G1} and {V >G1}
}

and let us define the following two functions:

V̂ = inf
F∈Sup[G1,G2)

F & V̌ = sup
F∈Sub(G1,G2]

F .(2.22)
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We will see in the proof below that the requirement on the function F from Sup[G1, G2) to
be superharmonic in {F <G2} corresponds to the fact that the ‘rope is pulled to the ground’
through the contact points with G2 , and the requirement on the same F to be superharmonic
in {V <G2} corresponds to the fact that the contact points with G2 are selected among the
contact points of V and G2 (the former representing a benchmark value that is invariant to
the order of pulling). The analogous remark may be directed towards the two requirements
on the function F from Sub(G1, G2] . We will also see in Example 2.2 below that neither of
these requirements can be omitted if we are to characterise the Nash equilibrium via equality
between V̂ and V̌ as defined in (2.22).

The main result of the paper may now be stated as follows. We note that the consequences
(2.27)-(2.29) were derived in various special cases earlier in the literature (see e.g. [18, p. 702]).

Theorem 2.1. Consider the optimal stopping game (2.11) where the strong Markov process
X is assumed to be right-continuous. Then V̌ ≤ V∗ = V ∗ ≤ V̂ and we have:

(2.23) V̂ = V̌ ⇐⇒ Nash equilibrium (1.4) holds.

Moreover, in this case, setting V := V̂ = V̌ , D1 = {V = G1} , D2 = {V = G2} , letting
τD1 = inf { t ≥ 0 : Xt ∈ D1 } denote the first entry time of X into D1 , and letting σD2 =
inf { t ≥ 0 : Xt ∈ D2 } denote the first entry time of X into D2 , we have:

The value function V belongs to Sup[G1, G2) ∩ Sub(G1, G2] .(2.24)

The first entry times τD1 and σD2 are Nash optimal in the sense that(2.25)

Mx(τ, σD2) ≤ Mx(τD1 , σD2) ≤ Mx(τD1 , σ)

for all stopping times τ and σ , and all x ∈ E .

If τ∗ and σ∗ are Nash optimal stopping times, then(2.26)

τD1 ≤ τ∗ Px-a.s. & σD2 ≤ σ∗ Px-a.s.

for all x ∈ E .

The value function V is subharmonic in C1 = {V > G1} , i.e. the stopped process(2.27)

(V (Xt∧τD1
))t≥0 is a right-continuous submartingale.

The value function V is superharmonic in C2 = {V < G2} , i.e. the stopped process(2.28)

(V (Xt∧σD2
))t≥0 is a right-continuous supermartingale.

The value function V is harmonic in C1 ∩ C2 , i.e. the stopped process(2.29)

(V (Xt∧τD1
∧σD2

))t≥0 is a right-continuous martingale.

In particular, if the strong Markov process X is right-continuous and left-continuous over
stopping times, then (2.23)-(2.29) are satisfied.

Proof. Since X is right-continuous we know that V ∗ = V∗ and V := V ∗ = V∗ defines a
measurable function (recall the text stated prior to (2.20) above).
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1. We first show that the value function V is finely continuous. For this, take any stopping
times ρn and ρ such that ρn ↓ ρ as n →∞ and recall from (2.8) that it is enough to show
that ExV (Xρn) → ExV (Xρ) as n →∞ . This will be done in three steps as follows.

Firstly, let us recall that we have

(2.30) ExV (Xρ) = inf
σ≥ρ

sup
τ≥ρ

Mx(τ, σ) = sup
τ≥ρ

inf
σ≥ρ

Mx(τ, σ)

for all x ∈ E . This is a consequence of the strong Markov property of X and the fact that
the underlying families of random variables are downwards and upwards directed (for further
details see [12] and [27]).

Secondly, for any stopping time σ > ρn we find that

Mx(τ, σ) = Ex

([
G1(Xτ ) I(τ <σ) + G2(Xσ) I(σ<τ) + G3(Xτ ) I(τ =σ)

]
I(τ <ρn)

)
(2.31)

+ Ex

([
G1(Xτ∨ρn) I(τ∨ρn <σ) + G2(Xσ) I(σ<τ∨ρn)

+ G3(Xσ) I(σ=τ∨ρn)
]
I(τ≥ρn)

)

= Ex

[
G1(Xτ ) I(τ <ρn)

]

+ Ex

(
G1(Xτ∨ρn) I(τ∨ρn <σ) + G2(Xσ) I(σ<τ∨ρn)

+ G3(Xσ) I(σ=τ∨ρn)
)

− Ex

([
G1(Xτ∨ρn) I(τ∨ρn <σ) + G2(Xσ) I(σ<τ∨ρn)

+ G3(Xσ) I(σ=τ∨ρn)
]
I(τ <ρn)

)

= Ex

[
G1(Xτ ) I(τ <ρn)−G1(Xρn) I(τ <ρn)

]
+ Mx(τ∨ρn, σ)

= Ex

[
G1(Xτ∧ρn)−G1(Xρn)

]
+ Mx(τ∨ρn, σ) .

From (2.30) and (2.31) it follows that

ExV (Xρ) ≤ Ex sup
ρ≤t≤ρn

|G1(Xt)−G1(Xρn)|+ inf
σ>ρn

sup
τ≥ρn

Mx(τ, σ)(2.32)

= Ex sup
ρ≤t≤ρn

|G1(Xt)−G1(Xρn)|+ ExV (Xρn)

for all n ≥ 1 , where the equality can be justified as follows. For stopping times τ , σ and σn

such that σ ≤ σn we have

Mx(τ, σ)−Mx(τ, σn)(2.33)

= Ex

[
G1(Xτ ) I(τ <σ) + G2(Xσ) I(σ< τ) + G3(Xτ ) I(τ =σ, τ 6=σn)

−G1(Xτ ) I(τ <σn)−G2(Xσn) I(σn <τ)−G3(Xτ ) I(τ =σn, τ 6=σ)
]

≥ Ex

(
G1(Xτ )

[
I(τ <σ) + I(τ =σ, τ 6=σn)

]
+ G2(Xσ) I(σ<τ)
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−G1(Xτ ) I(τ <σn)−G2(Xσn)
[
I(σn <τ) + I(τ =σn, τ 6=σ)

])

= Ex

([
G2(Xσ)−G2(Xσn)

]
I(σ<τ)

+ G1(Xτ )
[
I(τ <σ)− I(τ <σn) + I(τ =σ, τ 6=σn)

]

+ G2(Xσn)
[
I(σ<τ)− I(σn <τ)− I(τ =σn, τ 6=σ)

])

= Ex

([
G2(Xσ)−G2(Xσn)

]
I(σ<τ) +

[
G2(Xσn)−G1(Xτ )

]
I(σ<τ <σn)

)
.

If {σm : m ≥ 1} is taken to be a strictly decreasing sequence of (discrete) stopping times such
that σm ↓ σ as m → ∞ , then by (2.7) and (2.9) we see that the right-hand side of (2.33)
tends to zero uniformly over all τ . It follows that

(2.34) sup
τ≥ρn

Mx(τ, σ) ≥ lim sup
m→∞

sup
τ≥ρn

Mx(τ, σm) ≥ inf
σ>ρn

sup
τ≥ρn

Mx(τ, σ)

for all σ ≥ ρn . Taking the infimum over all σ ≥ ρn we find that the equality in (2.32) holds
as claimed.

Thirdly, letting n →∞ in (2.32) and using (2.7) with (2.9) we find that

(2.35) ExV (Xρ) ≤ lim inf
n→∞

ExV (Xρn) .

Applying the preceding conclusion to the optimal stopping game with the gain/loss functions
G̃1 := −G2 , G̃2 := −G1 and G̃3 := −G3 , it follows that the value function Ṽ = −V satisfies
the inequality (2.35) which is the same as

(2.36) ExV (Xρ) ≥ lim sup
n→∞

ExV (Xρn) .

Combining (2.35) and (2.36) we see that ExV (Xρn) → ExV (Xρ) as n → ∞ , and thus V is
finely continuous as claimed.

2. To derive (2.23) we will first show that

(2.37) V̌ ≤ V∗ ≤ V ∗ ≤ V̂

on E . For this, take an arbitrary function F from Sup[G1, G2) , set D2,F = {F = G2} , and
let σD2,F

= inf { t ≥ 0 : Xt ∈ D2,F } denote the first entry time of X into D2,F . Since both
F and G2 are finely continuous, it is easily seen using (2.7) that F (Xσ2,F

) = G2(Xσ2,F
) when

σD2,F
< ∞ , and (2.12) implies that the previous identity also holds when σD2,F

= ∞ . Hence
for any stopping time τ we have

F (Xτ∧σD2,F
) = F (Xτ ) I(τ <σD2,F

) + G2(XσD2,F
) I(σD2,F

≤τ)(2.38)

≥ G1(Xτ ) I(τ <σD2,F
) + G2(XσD2,F

) I(σD2,F
<τ) + G3(Xτ ) I(τ =σD2,F

).

Since F is superharmonic in E\D2,F it follows that

(2.39) F (x) ≥ ExF (Xτ∧σD2,F
) ≥ Mx(τ, σD2,F

)
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for all stopping times τ and all x ∈ E . Taking the supremum over all τ , and then the
infimum over all σ , we get

(2.40) F (x) ≥ sup
τ

Mx(τ, σD2,F
) ≥ inf

σ
sup

τ
Mx(τ, σ) = V ∗(x)

for all x ∈ E . Taking the infimum over all F in Sup[G1, G2) we can then conclude that
V̂ (x) ≥ V ∗(x) for all x ∈ E . The inequality V̌ ≤ V∗ can be proved analogously (or follows
by symmetry). Combining the two inequalities we get (2.37) as claimed.

3. Let us now show that V̂ = V̌ in (2.23) implies that the Nash equilibrium (1.4) holds.
For this, recall that V := V ∗ = V∗ , set D2 = {V = G2} , and let σD2 = inf { t ≥ 0 : Xt ∈
D2 } denote the first entry time of X into D2 . Then as above since both V and G2 are
finely continuous, it is easily seen using (2.7) that V (XσD2

) = G2(XσD2
) when σD2 < ∞ ,

and (2.12) implies that the previous identity also holds when σD2 = ∞ . Hence taking any
F ∈ Sup[G1, G2) , recalling that F is superharmonic in E\D2 and F ≥ V ≥ G1 , it follows
as in (2.38) and (2.39) above that for any stopping time τ we have

F (x) ≥ ExF (Xτ∧σD2
) ≥ ExV (Xτ∧σD2

)(2.41)

= Ex

[
V (Xτ ) I(τ <σD2) + G2(XσD2

) I(σD2≤τ)
]

≥ Ex

[
G1(Xτ ) I(τ <σD2) + G2(XσD2

) I(σD2 <τ) + G3(Xτ ) I(τ = σD2)
]

= Mx(τ, σD2)

for all x ∈ E . Taking the infimum over all F in Sup[G1, G2) we get

(2.42) V̂ (x) ≥ Mx(τ, σD2)

for all stopping times τ and all x ∈ E . It can be proved analogously (or follows by symmetry)
that the following inequality holds

(2.43) V̌ (x) ≤ Mx(τD1 , σ)

for all stopping times σ and all x ∈ E , where D1 = {V = G1} and τD1 = inf { t ≥ 0 : Xt ∈
D1 } denotes the first entry time of X into D1 . Combining (2.42) and (2.43) with the fact
that V = V̂ = V̌ (which follows by (2.37) and the hypothesis) we see that

(2.44) Mx(τ, σD2) ≤ V (x) ≤ Mx(τD1 , σ)

for all stopping times τ and σ , and for all x ∈ E . This shows that the Nash equilibrium (1.4)
holds with τ∗ = τD1 and σ∗ = σD2 . Moreover, taking the infimum over all F ∈ Sup[G1, G2)
in (2.41), we see from the first two inequalities that V is superharmonic in E\D2 and thus
belongs to Sup[G1, G2) . The fact that V belongs to Sub(G1, G2] can be proved analogously
(or follows by symmetry). This establishes (2.24) and hence (2.27)-(2.29) follow by (2.16)-
(2.18). This completes the first part of the proof.

4. We now show that (2.26) holds. For this, let us assume that the Nash equilibrium (1.4)
holds with some stopping times τ∗ and σ∗ . We will first verify that (1.4) implies that

(2.45) Ex

[
G1(Xτ∗)I(τ∗=σ∗)

]
= Ex

[
G3(Xτ∗)I(τ∗=σ∗)

]
= Ex

[
G2(Xτ∗)I(τ∗=σ∗)

]
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for all x ∈ E . Indeed, if we suppose that the second identity in (2.45) is not satisfied, i.e.

(2.46) Ex

[
G2(Xτ∗)I(τ∗=σ∗)

]
> Ex

[
G3(Xτ∗)I(τ∗=σ∗)

]

we can set τ ε
∗ = (τ∗+ ε) 1A + τ∗ 1Ac where A = {τ∗= σ∗} and conclude that τ ε

∗ is a stopping
time since A ∈ Fτ∗∧σ∗ ⊆ Fτ∗ . Note that there is no restriction to assume that τ∗ < ∞ and
σ∗ < ∞ on A due to (2.12). Likewise, if the horizon T is finite, then τ∗+ ε in the definition
of τ ε

∗ above should be replaced by (τ∗+ ε) ∧ T and the remaining part of the proof can be
carried out in exactly the same way. Circumventing these technicalities we find that

Mx(τ
ε
∗ , σ∗) = Ex

[
G1(Xτε∗ ) I(τ ε

∗ <σ∗) + G2(Xσ∗) I(σ∗<τ ε
∗ ) + G3(Xτε∗ ) I(τ ε

∗ = σ∗)(2.47)

= Ex

[
G1(Xτ∗) I(τ∗<σ∗) + G2(Xσ∗)

(
1A + I(σ∗<τ∗)

)]

= Ex

[
G1(Xτ∗) I(τ∗<σ∗) + G2(Xσ∗) I(σ∗≤τ∗)

]

> Ex

[
G1(Xτ∗) I(τ∗<σ∗) + G2(Xσ∗) I(σ∗<τ∗) + G3(Xσ∗) I(σ∗= τ∗)

]

= Mx(τ∗, σ∗)

upon using (2.46). As the strict inequality in (2.47) violates the first inequality in (1.4) we
see that (2.46) must be false. Hence the second identity in (2.45) holds as claimed. The first
identity in (2.45) can be proved analogously (or follows by symmetry).

Let us now show that τD1 ≤ τ∗ Px -a.s. for each x ∈ E given and fixed. For this, note
that by (1.4) and the first identity in (2.45) we have

(2.48) V (x) = Mx(τ∗, σ∗) = Ex

[
G1(Xτ∗) I(τ∗≤σ∗) + G2(Xσ∗) I(σ∗<τ∗)

]
.

Hence by the strong Markov property of X we get

ExV (Xτ∗) = Ex MXτ∗(τ∗, σ∗)(2.49)

= Ex

[
Ex

[
G1(Xτ∗)◦ θτ∗ I(τ∗◦ θτ∗≤σ∗◦ θτ∗)

+ G2(Xσ∗)◦ θτ∗ I(σ∗◦ θτ∗ <τ∗◦ θτ∗) | Fτ∗
]]

= ExG1(Xτ∗)

upon using that G1(Xτ∗)◦ θτ∗ = G1(Xτ∗+τ∗◦θτ∗ ) = G1(Xτ∗) since τ∗◦ θτ∗ = 0 given Fτ∗ . From
(2.49) we see that V (Xτ∗) = G1(Xτ∗) Px -a.s. and hence τD1 ≤ τ∗ Px -a.s. by definition of
τD1 . The inequality σD2 ≤ σ∗ Px -a.s. can be proved analogously (or follows by symmetry).

5. Let us now show that the reverse implication in (2.23) holds, i.e. let us assume that the
Nash equilibrium (1.4) holds with some stopping times τ∗ and σ∗ , and let us show that this
fact implies that V̂ = V̌ . For this, in view of (2.37) it is enough to show that V belongs to
both Sup[G1, G2) and Sub(G1, G2] . To show that V belongs to Sup[G1, G2) it is sufficient
to take any stopping time τ and for a given and fixed x ∈ E show that

(2.50) ExV (Xρ) ≤ V (x)

where ρ = τ ∧ σD2 and σD2 = inf { t ≥ 0 : Xt ∈ D2 } denote the first entry time of X into
D2 . To derive (2.50) let us first assume that σ∗ is the first entry time of X into a Borel

11



set (this assumption is only made for the reasons of comparison with the more general proof
below). Since by (2.26) we have ρ ≤ σ∗ it follows that σ∗ = ρ + σ∗◦ θρ (recall the sentence
following (2.3) above). Hence by the strong Markov property of X we get

ExV (Xρ) = ExMXρ(τ∗, σ∗)(2.51)

= Ex

[
Ex

[
G1(Xτ∗)◦ θρ I(τ∗◦ θρ <σ∗◦ θρ)

+ G2(Xσ∗)◦ θρ I(σ∗◦ θρ <τ∗◦ θρ)

+ G3(Xτ∗)◦ θρ I(τ∗◦ θρ =σ∗◦ θρ) | Fρ

]]

= Ex

[
G1(Xτ ′∗) I(τ ′∗<σ∗) + G2(Xσ∗) I(σ∗<τ ′∗) + G3(Xτ ′∗) I(τ ′∗= σ∗)

]

= Mx(τ
′
∗, σ∗) ≤ V (x)

where τ ′∗ = ρ + τ∗◦ θρ is a stopping time and the final inequality follows by the first inequality
in (1.4). This establishes (2.50) when σ∗ is the first entry time of X into a Borel set.

Let us now show that (2.50) also holds when σ∗ is an arbitrary stopping time. Since by
(2.26) we have ρ ≤ σ∗ it follows by (2.1)-(2.3) that σ∗(ω) = ρ(ω) + σρ

∗(ω, θρ(ω)) where the
function σρ

∗ : Ω×Ω → [0,∞] is Fρ⊗F∞ -measurable and ϑ 7→ σρ
∗(ω, ϑ) is a stopping time for

every ω ∈ Ω . Hence by the second inequality in (1.4) we have

(2.52) V (x) ≤ Mx(τ∗, σρ
∗(ω, ))

for all x ∈ E and each ω ∈ Ω given and fixed. Setting x = Xρ(ω) in (2.52) we get

(2.53) V (Xρ(ω)) ≤ MXρ(ω)(τ∗, σ
ρ
∗(ω, ))

for all ω ∈ Ω . Taking Ex on both sides in (2.53) with respect to ω and applying the extended
strong Markov property (2.5) we obtain

ExV (Xρ(ω)) = ExMXρ(ω)(τ∗, σ
ρ
∗(ω, ))(2.54)

= Ex

[
Ex

[
G1(Xτ∗)◦ θρ I(τ∗◦ θρ <σρ

∗( , θρ))

+ G2(Xσρ
∗( , · ))◦ θρ I(σρ

∗( , θρ)<τ∗◦ θρ)

+ G3(Xτ∗)◦ θρ I(τ∗◦ θρ <σρ
∗( , θρ)) | Fρ

]
(ω)

]

= Ex

[
G1(τ

′
∗) I(τ ′∗<σ∗) + G2(Xσ∗) I(σ∗<τ ′∗) + G3(Xτ ′∗) I(τ ′∗=σ∗)

]

= Mx(τ
′
∗, σ∗) ≤ V (x)

where τ ′∗ = ρ+τ∗◦θρ is a stopping time and the final inequality follows by the first inequality in
(1.4). This establishes (2.50) when σ∗ is an arbitrary stopping time and hence V belongs to
Sup[G1, G2) as claimed. The fact that V belongs to Sub(G1, G2] can be proved analogously
(or follows by symmetry). Since V is shown to belong to both Sup[G1, G2) and Sub(G1, G2]
it follows by (2.37) that V̂ = V̌ and the proof is complete. ¤

The following example shows that neither of the requirements in the definitions (2.20) and
(2.21) can be omitted if we are to characterise the Nash equilibrium via equality between the
smallest superharmonic and the largest subharmonic function.
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Example 2.2. Let the state space E of the process X be [−1, 1] . If X starts at
x ∈ (−1, 1) let X be a standard Brownian motion B until it hits either −1 or 1 ; if X
hits −1 before 1 let X be absorbed and remain at −1 forever; if X hits 1 before −1 let
X start afresh from 0 as an independent copy of B ; and so on. If X starts at x ∈ {−1, 1}
let X stay at the same x for the rest of time. It follows that X is a right-continuous strong
Markov process which is not left-continuous over stopping times. Indeed, if we consider the
first hitting time ρε of X to 1−ε under Px for x ∈ (−1, 1) given and fixed, then ρε ↑ ρ
as ε ↓ 0 so that ρ is a stopping time, however, the value Xρε = 1−ε does not converge to
Xρ ∈ {−1, 0} as ε ↓ 0 on the set {ρ < ∞} which has strictly positive Px -measure, implying
the claim.

Let G1(x) = x(x+1)−1 and G2(x) = −x(x−1)+1 for x ∈ [−1, 1] , and let G3 be
equal to G1 on [−1, 1] . Note that Gi(−1) = −1 and Gi(1) = 1 for i = 1, 2, 3 . Note
also that lim t→∞ Gi(Xt) = Gi(−1) = −1 so that Gi(X∞) is naturally set to be equal −1
under Px for x ∈ [−1, 1) and i = 1, 2, 3 . On the other hand, under P1 we clearly have
Gi(X∞) := lim t→∞ Gi(Xt) = Gi(1) = 1 for i = 1, 2, 3 . It is then easily seen that V ∗(x) =
V∗(x) = x for all x ∈ [−1, 1] with τε = inf { t ≥ 0 : Xt ≤ a1

ε or Xt ≥ b1
ε } (where a1

ε < b1
ε

satisfy G1(a
1
ε) = a1

ε−ε and G1(b
1
ε) = b1

ε−ε ) and σε = inf { t ≥ 0 : Xt ≤ a2
ε or Xt ≥ b2

ε }
(where a2

ε <b2
ε satisfy G2(a

2
ε) = a2

ε+ε and G2(b
2
ε) = b2

ε+ε ) being approximate stopping times
satisfying Mx(τ, σε) − ε ≤ V∗(x) ≤ V ∗(x) ≤ Mx(τε, σ) + ε for all stopping times τ and σ ,
all x ∈ [−1, 1] , and all ε > 0 . For this, note that X is a standard Brownian motion before
hitting either ai

ε or bi
ε for i = 1, 2 respectively, and taking first the infimum over all σ and

then the supremum over all τ in the final inequality above, one finds that V ∗ ≤ V∗ + ε , and
hence V ∗ = V∗ follows as well. Thus the Stackelberg equilibrium (1.3) holds with V (x) = x
for all x ∈ [−1, 1] . It is clear, however, that the Nash equilibrium fails as it is impossible
to find stopping times τ∗ and σ∗ satisfying (1.4) above. Note that the natural candidates
τ ≡ ∞ and σ ≡ ∞ are ruled out, since Mx(∞,∞) = −1 for x ∈ [−1, 1) and Mx(∞,∞) = 1
for x = 1 , which differs from V (x) = x when x ∈ [−1, 1) .

Now consider a function Fε : [−1, 1] → IR that is linear on [−1+ε, 1−ε] and satisfies
Fε(x) = G2(x) for x ∈ [−1,−1+ε] ∪ [1−ε, 1] and ε > 0 . Clearly each such Fε satisfies
G1 ≤ Fε ≤ G2 on [−1, 1] and is (finely) continuous and superharmonic in {Fε <G2} . Taking
the infimum over all Fε as in (2.22) above when ε runs over (0, 1/2) for instance, we see
that the resulting infimum function V̂ equals V . Similarly (or by symmetry) it follows that
the resulting supremum function V̌ equals V . Thus, in this case, we have V̂ = V̌ = V
without a Nash equilibrium being attained. This shows that in the definitions (2.20) and (2.21)
one cannot omit the requirement on the function F to be superharmonic in {V < G2} and
subharmonic in {V >G1} respectively (the ‘rope cannot be pulled asymptotically’).

Moreover, taking X to be a standard Brownian motion in [−1, 1] that is absorbed at
the time of hitting either −1 or 1 , and setting G1(x) = x2−1 and G2(x) = (x2−1)/2
for x ∈ [−1, 1] , it is easily seen that the Nash equilibrium holds with V (x) = G2(x) for all
x ∈ [−1, 1] . Since {V < G2} = ∅ we see that any finely continuous function F satisfying
G1 ≤ F ≤ G2 is superharmonic in {V < G2} . This shows that in the definition (2.20) one
cannot omit the requirement on the function F to be superharmonic in {F <G2} . Similarly
(or by symmetry) it follows that in the definition (2.21) one cannot omit the requirement on
the function F to be subharmonic in {F >G1} .
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[21] Kühn, C. and Kyprianou, A. E. (2007). Callable puts as composite exotic options.
Math. Finance 17 (487-502).
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